THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH2050C Mathematical Analysis I

Tutorial 9 (April 8)

Squeeze Theorem. Let $A \subseteq \mathbb{R}$, let $f, g, h \colon A \to \mathbb{R}$, and let c be a cluster point of A. If

$$f(x) \le g(x) \le h(x)$$
 for all $x \in A$, $x \ne c$,

 $and \ if \lim_{x\to c} f = L = \lim_{x\to c} h, \ then \ \lim_{x\to c} g = L.$

Example 1. Deduce the following limits using the Squeeze Theorem.

- (a) $\lim_{x\to 0} \cos x = 1$
- (b) $\lim_{x \to 0} \left(\frac{\cos x 1}{x} \right) = 0$
- (c) $\lim_{x \to 0} \left(\frac{\sin x}{x} \right) = 1$
- (d) $\lim_{x\to 0} (x\sin(1/x)) = 0.$

Definition. Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$, and let $c \in A$. We say that f is **continuous** at c if, given any $\varepsilon > 0$, there exists $\delta > 0$ such that if $x \in A$ and $|x - c| < \delta$, then $|f(x) - f(c)| < \varepsilon$.

Remarks. (1) If $c \in A$ is a cluster point of A, then f is continuous at c if and only if

$$f(c) = \lim_{x \to c} f(x).$$

(2) If $c \in A$ is not a cluster point of A, then f is automatically continuous at c since $A \cap V_{\delta}(c) = \{c\}$ for some $\delta > 0$.

Sequential Criterion for Continuity. A function $f: A \to \mathbb{R}$ is continuous at the point $c \in A$ if and only if for every sequence (x_n) in A that converges to c, the sequence $(f(x_n))$ converges to f(c).

Example 2. Let $f: \mathbb{R} \to \mathbb{R}$ be the Dirichlet's function defined by

$$f(x) := \begin{cases} 1 & \text{if } x \text{ is rational,} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

Show that f is not continuous at any point of \mathbb{R} .

Classwork

1. Determine the limit $\lim_{x\to 0} \frac{1}{x} \sin(\sin(x^2))$.

Solution. Note that $-|x| \leq \sin x \leq |x|$ for all $x \in \mathbb{R}$. Then

$$-|x^2| \le -|\sin x^2| \le \sin(\sin x^2) \le |\sin x^2| \le |x^2| \quad \text{for all } x \in \mathbb{R}.$$

Thus

$$-|x| \le \frac{1}{x}\sin(\sin x^2) \le |x|$$
 for all $x \ne 0$.

Since $\lim_{x\to 0} |x| = 0$, it follows from the Squeeze Theorem that $\lim_{x\to 0} \frac{1}{x} \sin(\sin(x^2)) = 0$.

2. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) := \begin{cases} x & \text{if } x \text{ is rational,} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

Determine all the continuity point(s) of f. Justify your answer.

Solution. The function f is continuous at 0 and is not continuous at any other points.

Let c=0. Given $\varepsilon>0$, take $\delta=\varepsilon$. Now, if $x\in\mathbb{R}$ and $|x-c|<\delta$, then

$$|f(x) - f(c)| = |f(x) - 0| = |f(x)| \le |x| < \delta = \varepsilon.$$

Hence f is continuous at 0.

Let $b \neq 0$. If $b \in \mathbb{Q}$, let (x_n) be a sequence in $\mathbb{R} \setminus \mathbb{Q}$ that converges to b. Then $f(x_n) = 0$ for all n, so that $\lim_{n \to \infty} (f(x_n)) = 0$. However $f(b) = b \neq 0$.

If $b \in \mathbb{R} \setminus \mathbb{Q}$, let (y_n) be a sequence in \mathbb{Q} that converges to b. Then $f(y_n) = y_n \to b$. However f(b) = 0.

In either case, f is not continuous at b.